
Massively Distributed Monitoring

Christopher Peplin (peplin@cmu.edu)

May 1, 2011

Abstract

As the scale of distributed systems continue to grow, the basic question of monitoring the system’s
status becomes more difficult. How do you monitor an extremely large scale network of nodes without
requiring a massive, centralized cluster for data collection?

To monitor these systems from a central location would mean potentially hundreds of thousands of
new connections every second, each with a very small update. Persistent connections do not help, since
a server cannot maintain that many open connections.

This paper evaluates different approaches to monitoring and describes the implementation of a few
novel monitoring techniques in the peer-to-peer video distribution network Astral. Peers in Astral use a
self-organized dynamic hierarchy, temporal batching and update filtering to increase the scalability of the
monitoring subsystem. Some of the trade-offs associated with these optimizations are also enumerated.

1 Introduction

Computer system architecture shifted three major
times in the past 30 years. Individual, personal com-
puters gave way to mainframes and thin clients. The
tide shifted back to powerful end-user clients in the
1990’s. Now, the cloud and web services embody
somewhat of a throwback to the mainframe era.

A web service is both distributed and centralized
— distributed in that the client and server are sep-
arated; centralized in that all clients of a particu-
lar service connect to the same central hub. In data
centers and a few emerging peer-to-peer applications,
smaller distributed systems are emerging. The data
center ecosystem itself is one massively distributed
system, encompassing thousands of nodes across a
diverse geography. In short, distributed systems are
more common than ever and the importance of mon-
itoring, tracking and accounting hasn’t waned.

1.1 Problem

As distributed systems become the norm, business
process managers are more and more interested in
collecting knowledge of the behavior of the system.
Planning and marketing are also increasingly data-
driven. Each client, server or peer in a system gen-
erates potentially valuable usage statistics. System
operators want to access this data from the granu-
larity of an individual node up to an aggregate value
for the entire system, or a value derived from many
statistics.

As the scale of a distributed system increases, the
monitoring task can potentially become a burden for
an application. The demands and overhead of moni-
toring can equal or exceed those of the system’s nor-
mal duties.

A prime example of a problematic monitoring sit-
uation is that for large peer-to-peer networks. With
lessons learned from the centralization of Napster and
the unstructured overlay network of Gnutella, mod-
ern peer-to-peer applications like BitTorrent focus on
a completely decentralized operation that incorpo-
rates a minimal amount of local structure in the net-
work graph. BitTorrent trackers can collect statistics
on the files they seed, but statistics for a resource
distributed among multiple trackers are difficult to
reconcile.

Another example is massively multiplayer online
games. Blizzard has a vested interested in tracking
the users of their massively multiplayer online game
World of Warcraft for billing, game balancing and to
plan for future expansions. In order to scale the game
world in a reasonable fashion, the developers split
up the environment into thousands of shards. The
gameplay statistics must make it back to a central-
ized location at Blizzard eventually, but the fractured
architecture doesn’t lend itself to a simple solution.

Civil infrastructure monitoring efforts have also
encountered these issues. Consider a thousand mile
gas pipeline — current monitoring approaches require
wireless sensors spaced evenly along the route, which
can quickly outpace a large data center in raw num-

1



ber of nodes.

1.2 Research Goals

This paper summarizes the challenges with large-
scale, distributed monitoring systems and details
some accepted solutions and their limitations. To
test these ideas, we extended the logging and mon-
itoring functionality of the experimental distributed
system Astral [12].

Astral is a peer-to-peer streaming media content
delivery network. The intent of Astral is to leverage
the available upstream bandwidth of users watching
a live video stream to alleviate the stress (and band-
width bill) of the stream provider. Instead of all
retrieving the video stream from a central location,
clients look among network peers for those watching
the same event. To match the quality and quantity
of metrics available from a centralized system (and
demanded by management), Astral must provide de-
tailed usage statistics on the streams and their view-
ers. Using Astral, we found some of the limits of
centralized data collection and tested the feasibility
of a more distributed approach.

Definitions

• Source / Node — The root source of a statis-
tic, e.g. a user’s client connected to the Astral
network.

• Sink / Collector — The hub for collecting
statistics from sources.

• Supernode — A parent node in charge of 1 to
n child nodes. The leader of a neighborhood of
nodes. Typically not specially deployed hard-
ware, but common nodes promoted by the sys-
tem dynamically.

2 Monitoring

2.1 Metrics

The range of specific metrics that a system designer
or operator might like to have is quite wide, and thus
a monitoring framework must have a generic, unified
interface for specifying the type, number and value
of data points. It must be simple to add new metrics
for each node, of different types of data.

In the context of an individual node, metrics in-
clude:

• CPU usage (instantaneous and averaged)

• Hard disk usage

• Memory usage

• Swap space usage

• Clock skew

• Network throughput

• Network latency

One level higher, applications have their own (poten-
tially more interesting) metrics. For some common
infrastructure-level components, metrics include:

• Database query latency

• Database index performance

• Database replication status

• Task queue failure rates

A peer-to-peer network’s metrics include:

• Number of peers

• Supernode organization

• Supernode history

• Network membership history for a peer

• Specific data requested from the network

• Resource available at a peer

The metrics for an online game include:

• Individual player playtime

• Aggregate player activity

• Inter-player transactions

• Non-player character spawns

• Occurrence of in-game events

The types of civil infrastructure vary widely, but they
tend to have close relation to a physical world element
and external sensor input. Some sensor data may
come in the form of video or images, further com-
plication collection and storage methods. Common
infrastructure metrics include:

• Temperature

• Pressure

• Flood gate status (boolean)

2.2 Challenges

The world of data center monitoring is changing
rapidly. The developers of the popular monitoring
tool Ganglia remark that “high performance systems
today have sharply diverged from the monolithic ma-
chines of the past and now face the same set of chal-
lenges as that of large-scale distributed systems” [9].

The variety of systems described earlier are all be-
ginning to look like data centers, and vice versa. The
core goal of any monitoring system is a global view of
the system for the purposes of health monitoring, per-
formance optimization and accounting. An aggregate

2



global view is more useful in a truly large scale sys-
tem, where individual node failures are likely masked
or handled by efficient failover. Consider that “fail-
ure” in a network of cable TV set-top boxes could be
a user turning off a power strip each night.

The Ganglia developers suggest that the most im-
portant design challenges for a distributed monitor-
ing system are scalability, robustness, extensibility,
manageability, portability and overhead. This paper
covers three of these in greater detail.

2.2.1 Overhead

Performance overhead can manifest itself on individ-
ual nodes or across the network as a whole. The
monitoring system must not have a significant ef-
fect on the core task of the application, which means
it must not consume significant CPU time, perform
much disk access, or transfer large amounts of data
over the network.

A small network footprint also lends itself to a
more dynamic system. The less data that must be
transferred, the quicker the operator can view the
status of the entire system. Processing data as close
to its source as possible can both lessen the network
and central collection server load [3]. This must not
come at the expense of application performance.

What exactly can and should be processed at
the point of collection isn’t always clear. For ag-
gregate statistics, processing isn’t possible without a
full (or at least somewhat broad) view of the system.
Nodes in a sensor network, oppositely, are able to
process raw sensor data into a time averaged, human-
parseable statistic before sending. In a general sense,
the local processing optimization implies that data
should be summarized when and where applicable be-
fore being sent to the sink.

2.2.2 Scaling

There are three primary techniques for scaling mon-
itoring systems: hierarchical aggregation, arithmetic
filtering and temporal batching. Unfortunately, all
three introduce complexity, uncertainty and or delay
and can make the system highly sensitive to failure
[7].

Hierarchical Aggregation One problem for a
centralized data sink is the sheer number of updates.
A way to alleviate this stress is to aggregate the data
from multiple nodes at strategic points in the network
hierarchy. The exact size of each aggregated group is
configurable, depending the desired load on the col-
lection servers. The collected statistics can either be

forwarded along as a batch of individual updates or
combined into a single summary value (e.g. average
CPU load across a cluster of nodes).

Unfortunately, network failures are amplified in
a system with hierarchical aggregation. For exam-
ple, “if a non-leaf node fails, then the entire subtree
rooted at that node can be affected. [The] failure
of a level-3 node in a degree-8 aggregation tree can
interrupt updates from 512 leaf node sensors.” [7]

Arithmetic Filtering Many metrics change infre-
quently, so arithmetic filtering can be used to limit
the update frequency. After being reported to the
sink once, the metric is cached and assumed to remain
constant if no further updates are received. This only
works for certain classes of statistics (boolean states
are a good example), and also introduces ambiguity
— it’s difficult or impossible to distinguish between
a non-reporting node that truly has a constant value
and one that has failed [7]. One possible solution for
identifying truly failed nodes is to use the existence
of other updates from a node as an implicit aliveness
update.

Temporal Batching For statistics that change
frequently, but aren’t immediately required by the
system operator, temporal batching can further al-
leviate stress on the monitoring system. Either at
individual nodes or combined with hierarchical ag-
gregation, the values for a metric over a period of
time are batched before being sent to the sink.

Beyond problems associated with the inherent de-
lay in updates, temporal batching makes the system
much more vulnerable to networking problems — “a
short disruption can block a large batch of updates”
[7]. Updates can be persisted to a log on disk at each
node to make sure they are not lost.

A derived metric called network imprecision (NI)
was proposed [7] to account for these variances when
viewing system-wide statistics. NI is a “stability flag”
that indicates if the underlying network organization
is stable, which is a good indicator of the general ac-
curacy of the statistics. To calculate NI, each update
from a neighborhood of nodes must include:

• The number of nodes who may not be included
in this update

• The number of nodes who may be double
counted

• The total number of nodes

This solution for scalability introduces its own scal-
ability issue — the system must report when nodes

3



no longer are reachable, so an accurate accounting
of the number of active nodes in the system is re-
quired. This will not scale well to a large peer-to-peer
network without hierarchical organization and thus,
we’re back where we started.

2.2.3 Manageability

Manageability deals with both the system’s own au-
tomated organization as well as that of the humans
ultimately consuming the monitoring data. The man-
agement overhead must scale slowly with the number
of nodes for the system to remain useful.

The management and monitoring tools of large
distributed systems have the potential to become
more complicated than the applications themselves.
Components of the system can be grouped into orga-
nizations and split up work in a federated style to alle-
viate the management stress. The Domain Name Sys-
tem (DNS), for example, operates across thousands
of administrative and technical domains by leaving
many decisions up to the local administrators.

The Astrolabe [17] project proposed achieving
scalability through a hierarchy of zones, each zone
consisting of one or more nodes. The zone summa-
rizes statistics into fields of a bounded size — e.g. a
count of nodes with a certain property, not a list of
their names. The system provides eventual consis-
tency of these aggregate values, which is likely suf-
ficient for many distributed monitoring tasks (espe-
cially considering the length of time it takes any ac-
tion to propagate through an extremely large and di-
verse network) [17].

3 State of the Art

As data centers operations matured, monitoring coa-
lesced around a few state of the art tools. This section
describes some of the design decisions of these tools.

3.1 Storage

Any monitoring activity can generate a significant
amount of data, given enough nodes and metrics.
Even a single metric, measured often can quickly crip-
ple flat-file storage and traditional databases.

As an evolution from flat-file storage, the design-
ers of CARD [2] choose to use a standard SQL rela-
tional database. The motivation was the existing ro-
bust query language (SQL), and the ability to modify
table definitions after creation. The developers were
satisfied with their choice but there are a few issues
for a larger scale system. Monitoring data is not es-
pecially relational and could better fit in a database

intended for simpler data models. A database with
map-reduce style querying could also provide a more
natural interface. In fact, the designers had to add
custom SQL syntax to allow flexible enough querying.

Every monitoring task is going to require this
flexibility in data schema and query capability. A
database specialized for such flexibility, specifically
one of the newer schema-less databases like Mon-
goDB [10] or Redis [16], is likely a better fit. Non-
traditional databases are not new to monitoring —
by far the most popular choice, used by both Ganglia
and collectd [4], is RRDtool [1]. RRDtool is a circular
database designed specifically for time slice data like
monitoring statistics. The operator configures a max-
imum database size and older data is automatically
overwritten in a round-robin fashion to maintain this
size.

Operators who wish to archive such data must
workaround its cyclical nature by moving weekly or
monthly aggregate data to other RRDtool databases,
and again to yearly and beyond. These quirks (and
its rather slow performance when drawing graphs)
make it a sufficient but less than perfect choice.

Finally, CARD only scaled to a few hundred nodes
and due to their scale-up (and not scale-out) design, a
relational database would likely have a difficult time
keeping up if the system were to grow into tens of
thousands of nodes.

3.2 Collection

The method a system uses for collecting monitored
statistics can have a huge impact on its scalability;
the two ends of the spectrum are push and pull.

Pull A pull approach requires the sink to explicitly
request each desired data point from the nodes in the
system. The sink must poll the nodes at some reg-
ular interval if continuous updates are desired. This
requires central coordination and registration of all
nodes in the system, which is often infeasible, espe-
cially in loosely structured peer-to-peer networks.

If the time it takes the sink to cycle through
all of the nodes exceeds the polling time, time be-
tween polling must be increased (thus losing fresh-
ness). Parallel querying can improve this, but only
up to a certain point, after which the pull model runs
into an issue shared with the push model. Regardless
of how often polling can be occur, it is likely that
much of the data is duplicated or unchanged. This
results in more network traffic than is necessary for
freshness.

The pull method is used by the open source

4



monitoring tool Munin, which periodically polls pre-
registered nodes to retrieve updates.

Push A push approach places the burden of send-
ing updates on the end nodes — either sporadically
or at a regular interval, they send their updates to the
sink identified by a known address. One problem with
this approach is management and configuration. The
update frequency and sink address are potentially dif-
ficult to change as they are distributed among many
nodes (possibly not controlled by the operator). The
use of a long-lived name and DNS can alleviate ad-
dress changes, but updating any other settings will
require that the nodes occasionally contact a config-
uration server to synchronize.

The scaling challenges of the push model are very
similar to those of running a large web application
— the sink must be able to handle a high request
throughput, most of them very small write opera-
tions. The write-heavy workload is somewhat unique,
but not especially challenging for today’s databases.

The push method is used by two prominent mon-
itoring tools in the industry, Ganglia and collectd.

Hybrid A hybrid push/pull gathering style can
potentially minimize the duplication of data, maxi-
mum freshness and reduce network traffic. From cold
start, the sink sends a request for data to each node
with an associated count c. The node performs as
in the push model c times, at which point the sink
refreshes the query for another period. This allows
occasional configuration changes to happen more nat-
urally, while not introducing constant network over-
head [2]. The nodes should self-register as in the push
model.

At the time of writing this report, there were no
widely used systems in the industry that use this hy-
brid approach.

3.3 Similarities to Civil Infrastructure

Interestingly, the shift in data centers to clusters of
low to moderately powerful nodes brings the com-
puting world more in line with the monitoring situa-
tion in civil infrastructure. Civil engineers and gov-
ernment organizations in charge of projects such as
roads, bridges, oil & gas pipelines and waterways have
been struggling with monitoring some of the earli-
est distributed systems. These are not distributed in
the familiar computing sense; they are often entirely
offline and unpowered. For decades, their data has
been gathered (often inconsistently) by hand. The
engineers tasked with accounting for trillions of dol-
lars of public assets and physical systems are dealing

with what could be viewed as widespread network
unreliability and wholly unreliable nodes.

The increasing affordability of small, accurate,
low-power sensors greatly interests civil engineers and
infrastructure planners as the promise of accurate,
fresh data is now realistic. Nearly all new construc-
tion comes complete with a range of sensors and a
suite of software for monitoring and analyzing the
current (and predicted future) state of the piece of
infrastructure.

Modern research prefers wireless sensors over
wired [8]. These systems are harder to disrupt, which
is of greater concern when the system is out in the
open and many network hops away from the central
office. A widely distributed wired network involves a
significant amount of extra infrastructure, and dam-
age to the infrastructure being monitoring often im-
plies damage to the monitoring system itself. Wire-
less systems have the advantage of being easier to de-
ploy, as they can self-organize into ad-hoc networks
as long as they are within range of another sensor
node. Connectivity problems also tend to be isolated
to individual units, and are easier to troubleshoot [8].

Recent projects have taken a page (knowingly or
not) from tools like Ganglia and now use a unified
data format, regardless of sensor or data type [8]. For
example, a single update could consist of:

• Type of data (1 byte)

• Geographic coordinates, determined via GPS or
inferred via signal strength of other nodes

• Network address

• Actual data (4 bytes)

These monitoring networks self-organize into a
dynamic hierarchy of nodes based on their placement
and capabilities. There are generally three types of
nodes deployed:

• Basic sensor node

• Communication relay node — collects data in
its 1- or 2-hop neighborhood

• Data Discharge Node — forward results to the
Network Control Center, i.e. the one with a
connection to the Internet

Whereas in computer system monitoring, each
node generally has similar capabilities for communi-
cation and sensing, the role of these nodes are bound
by their physical capabilities. Hierarchical organi-
zation becomes a simpler problem of guaranteeing a
wide enough dispersal of communication relay and
data discharge nodes to reach all of the leaves of the
tree, compared to the somewhat arbitrary trees made
in computer networks.

5



Figure 1: The major components of the central web application sink and a node in the Astral net-
work. Nodes communicate with one another via HTTP using an embedded web server (the Tornado
Python package). The web application that accepts statistics updates is written in Ruby using the
Sinatra web framework. The system component for actually streaming video is completely separate
- this is based around Adobe Flash’s Real-Time Message Protocol (RTMP) [15].

4 Astral, a Testbed

Astral is a peer-to-peer content distribution network
specifically built for live, streaming media. With-
out IP multicast, if content producers want to stream
video of live events to users, they are forced to cre-
ate a separate feed for each user. A peer-to-peer ap-
proach is more efficient and offloads much of the work
from the origin servers to the edge nodes of the net-
work.

Astral is built on the premise of having knowl-
edge of a virtual overlay network of streaming clients.
The system bootstraps itself and obtains this knowl-
edge automatically through messaging among nodes
and (to a limited extend) an origin web server. The
nodes communicate with HTTP using an embedded
web application running on each. They use simple
JSON messages over the wire with a standard format
for statistics. Each node runs a Python background
process and the user sends control messages to it from
the browser via simple HTTP requests in Javascript.
Figure 1 illustrates the major components of both the
nodes and the web application (which acts as both a
coordination point and statistics sink).

Definitions

• Stream — A real-time data stream either of a
live video source or of a stored recording

• Node — A networked computer running the As-
tral client and connected to the Astral network.
The node can be acting as as producer, con-
sumer, seeder, or a combination.

4.1 Goals

The primary motivation for Astral is the group
project in Carnegie Mellon University’s 18-842 Dis-
tributed Systems class [12]. A team of four develop-
ers (including myself) designed and implemented the
peer discovery & organization protocol and stream-
ing video service over the Spring 2011 semester. My
own development efforts were also focused on adding
a statistics generating and gathering component to
the system for the purposes of this paper.

4.2 Challenges

In contrast to traditional file sharing peer-to-peer net-
works, Astral is purpose-built to distribute live me-
dia. This prompted some interesting design decisions;
for instance, any client inside the network is guaran-
teed that what they are looking for is widely available.
Simply a client’s membership in the network is a hint
that it has data to distribute to its peers.

Compared to a centralized distribution network,
Astral’s nodes must pay special attention to reliabil-
ity. Users expect a steady video stream, even if the
quality has to be occasionally reduced due to network
congestion. In the centralized architecture, content
producers provide reliability by scaling out with ad-
ditional origin servers. In a peer-to-peer version, the
departure of any one client could have a rippling ef-
fect on its peers. Astral keeps multiple streams open
for the same content to increase robustness, similar
to bonding multiple network interface cards together
into one IP address.

Because of this resource duplication, the statistics

6



component must take care to deduplicate stream pop-
ularity statistics. Each count must be identified with
a unique node identifier to avoid counting the backup
as well as the primary stream as separate users.

4.3 Statistics

The statistics monitored in the Astral network are:

• Current (deduplicated) number of nodes watch-
ing a stream

• Number of nodes acting as seeders for a stream

• Bitrate of the stream

• IP addresses of nodes watching a stream, for
geographic visualization

• Network bandwidth of each node

4.4 Hierarchical Aggregation

The peers in Astral self-organize into a shallow hier-
archy at startup, by going through this process:

• Query a central web application for a bootstrap
list of supernodes

• Determine the round trip time to each supern-
ode as a heuristic to find the closest

• Register with the supernode - the new node will
be attached to this supernode for its lifetime.
The relationship is stored persistently and sur-
vives peer restarts.

All statistics updates from peers are sent directly
to their parent supernode, so beyond the initial boot-
strapping step (which in total occurs only once per
node) there is no load on the central server from in-
dividual peers.

The number of peers managed by a supernode
is proportional to their available processing capacity,
uptime and bandwidth. Long-living peers are obvi-
ously preferred to be supernodes to avoid requiring
the re-registration of every child node. Each supern-
ode can lessen the load on the sink linear with the
number of child nodes registered with it.

4.5 Arithmetic Filtering

Astral performs limited arithmetic filtering for the
stream viewer statistics. When a peer first requests
a stream, that information is propagated back to the
sink through a supernode. Once receiving the stream,
the peer sends a heartbeat every 5 seconds to its par-
ent supernode. The supernode does not propagate
this back to the sink, and thus it assumes that the
peer continues to watch the stream. When a peer
leaves the network (either notifying the supernode

during the proper shutdown procedure or as detected
at the supernode by missed heartbeats), the supern-
ode notifies the sink of the change in the peer’s status.

This filtering minimizes the number of updates
making it all the way back to the sink, but keeps
the data as fresh as possible with what are essen-
tially invalidation callbacks [6]. Without this filter-
ing, the sink would have to manage the heartbeats,
which could quickly overwhelm the server.

4.6 Temporal Batching

The stream provider is generally interested in the av-
erage bitrate of video received by the clients, but this
information is not required to be completely fresh.
Even after the live stream is concluded, this informa-
tion is useful for provisioning network bandwidth in
the future.

Astral takes advantage of this by batching 5 sec-
onds of video bitrate statistics and returning only an
average of these values to the sink. The batching is
done at the level of individual peers, and in the future
could also be performed at each supernode to further
diminish the number of updates.

5 Evaluation

Astral is obviously a very young project, and quan-
titative analysis analysis at this point is likely to
change quite a bit. However, we can do some ba-
sic comparisons between a baseline, completely cen-
tralized monitoring system and one with the various
improvements discussed. These are currently mathe-
matical projections, with the goal of performing prac-
tical tests when Astral’s development settles.

5.1 Baseline Centralized

With a push-based collection style, the limits of a sink
are very similar to that of a modern web application.
The most common bottlenecks are:

• Throughput & concurrency capabilities of the
front-end web server

• Throughput of the application server

• Performance of web application logic

• Database write throughput

A state-of-the-art web application stack geared to-
wards a write-heavy workload could consist of:

• Nginx Web Server as the point of entry for re-
quests [11]

7



hhhhhhhhhhhhhhhDepth
Batch Window Size

0 5s 10s 30s

One Level (Baseline Centralized) 100,000 20,000 10,000 3,333
Two Level (1000 supernodes) 1,000 200 100 33
Three Level (10 + 1000 Supernodes) 10 2 1 0.33

Figure 2: The effects of hierarchy depth and batch window delay on the overall number of update
requests in a 100,000 node cluster. The cells contain the total number of requests per second
received by the sink.

hhhhhhhhhhhhhhhDepth
Batch Window Size

0 5s 10s 30s

One Level (Baseline Centralized) 0 5s 10s 30s
Two Level 0 + 2 hops 10s 20s 60s
Three Level 0 + 3 hops 15s 30s 90s

Figure 3: The effects of hierarchy depth and batch window delay on the worst case freshness in a
100,000 node cluster. The cells contain the worst possible update delay in seconds.

Figure 4: This graph relates the total number of nodes being monitored with the total number of
requests per second that the sink cluster must be able to handle. The vertical axis is logarithmic to
accommodate the large range of request rates.

8



Figure 5: This graph relates the total number of nodes being monitored with the total number of
sink servers required to process them, assuming a maximum average of 500 requests per second per
sink. The vertical axis is logarithmic to accommodate the large range of request rates.

Figure 6: This graph relates the batch window size (in seconds) with the total number of requests
per second, on average, that the sink cluster must be able to handle. The vertical axis is logarithmic
to accommodate the large range of request rates.

9



• Phusion Passenger Ruby application server run-
ning 4+ concurrent OS threads [14]

• Ruby web application

• Redis, a high-performance key-value store [16]

The central web application component of As-
tral runs on this basic stack, deployed at the mo-
ment on the Heroku [5] platform. On an Intel Core
2 2.2GHz processor laptop with 4GB of RAM, the
Redis database performs at an average of 40,000 set
(i.e. write) operations per second.1 A Ruby appli-
cation in front of the database can server an average
of 500 requests per second (and re-implementing the
core statistics API in Java or Scala could increase
that further) [13].

In order to have fresh information within 1 sec-
ond, and assuming an average of 1 update per second
from each node, the sink must be able to handle n re-
quests per second, where n is the number of nodes in
the system. With a cluster of four application servers
and one Redis database, for example, the sink could
handle updates from a 2,000 node system on average.
The statistics in figures 2 and 3 for a 1-level hierarchy
correspond to this baseline centralized case.

5.2 Optimized Distributed

A much larger scale system such as one for streaming
the presidential inauguration (during which in 2009,
CNN served 1.3 million concurrent streams at the
peak) isn’t feasible with this linear scaling factor. To
handle that many nodes with a centralized sink would
require a 2,600 server cluster just for monitoring.

The primary goal of the optimizations discussed
in this paper is to lower the rate of updates from each
node. Temporal batching like Astral’s 5 second buffer
lowers the rate by a factor of 5. Hierarchical aggrega-
tion lowers it by a factor proportional to the fanout
of the supernodes. The effect of arithmetic filtering
is more difficult to determine, as it depends on the
length of time each node is connected. The longer
a node is connected, the more the cost of the single
connection request required is amortized. Short-lived
clients will cost no more than with a non-filtered ap-
proach, and long-lived clients will avoid potentially
thousands of requests over a one hour live event.

Figure 2 illustrates the effects of both tree depth
and batching window size on the total number of up-
date requests received by the sink. Something to keep
in mind when adding levels to the hierarchy is the
load on supernodes. If these are regular peers in the

network, they may not be able to sustain a high rate
of requests without impacting the user experience.
These projections assume the supernodes are capa-
ble of an average of 100 requests per second, and is
probably a bit high.

Figure 3 illustrates the worst case delay experi-
enced due to batching. These projections assume
that batching is done at every level (both supernodes
and regular nodes). If it only occurs on individual
nodes, the delay is never worse than that in a sin-
gle level hierarchy (plus a negligible amount for the
increased number of hops).

The delay from each of these optimizations can
be predicted with some confidence. With a two-level
hierarchy (a level of supernodes with regular nodes
beneath each), the delay for batch updated is equal
to the batching duration of each node. A 5 second
window avoids a significant number of requests but
doesn’t significantly delay the data. Other monitor-
ing tasks might be satisfied with even longer delays,
up to minutes.2 If the supernodes perform their own
temporal batching, or there is a deeper hierarchy with
additional batch windows, the worst case delay is only
the sum of the batching windows along the height of
the tree. Delay in one branch has no effect on the
freshness of data from another.

A monitoring system with a two-level hierarchy
and with a 5 second batching window on average
(i.e. some may be delivered closer to real-time than
others, based on the operators needs), the same four
server sink cluster from the baseline centralized ex-
ample could handle 1 million nodes (up from 2,000).

6 Conclusion

We have explored how many types of distributed sys-
tems are converging around very similar monitoring
challenges, including traditional data center environ-
ments, civil infrastructure and peer-to-peer networks.
The modern best practices described in this paper
for scaling up a monitoring system to thousands of
nodes come from the literature and existing systems
in many fields and the experience of implementing
Astral, a peer-to-peer content distribution network
implemented in part to test out these ideas.

Astral as it stands is an incomplete system, and
additional work is required before it is production-
ready. Its performance and exact approach to moni-
toring will likely change. The quantitative evaluation

1Determined with the redis-benchmark utility, distributed with the Redis server package.
2Note that temporal batching could also be incorporated into a simple centralized collection architecture, with the same

benefits.

10



of Astral can be extended in future work to determine
the optimal values for configurable parameters such
as the supernode fanout and batch window.

Monitoring these large systems is an increasingly
large task, one that cannot take continue to take
lower priority over other application features. Ap-
plications stand to benefit from decreased overhead
if monitoring can be worked into the system early on
in its development, and developers are encouraged to
plan the accessible views into their systems as early
as possible.

Source Code The Astral project is
available as an open source project at
http://github.com/peplin/astral.

6.1 Acknowledgements

Thanks to the students in the 18-845 course of Spring
2011 at Carnegie Mellon University who kindly re-
view this paper and offered their feedback. Thanks
also to Professor David O’Hallaron and Kushal
Dalmia for their help with research for the project
over the semester.

References

[1] About RRDtool. Apr. 19, 2011. url: http://
www.mrtg.org/rrdtool/.

[2] Eric Anderson and Dave Patterson. “Extensi-
ble, Scalable Monitoring for Clusters of Com-
puters.” In: Proceedings of the 11th USENIX
conference on System administration. LISA ’97.
San Diego, California: USENIX Association,
Oct. 1997, pp. 9–16. url: http://portal.acm.
org/citation.cfm?id=1037150.1037153.

[3] A. Asgari et al. “A scalable real-time monitor-
ing system for supporting traffic engineering.”
In: IP Operations and Management, 2002 IEEE
Workshop on. Dec. 2002, pp. 202–207. doi: 10.
1109/IPOM.2002.1045780.

[4] collectd - The System statistics collection dae-
mon. Apr. 19, 2011. url: http://collectd.
org/.

[5] Heroku. Apr. 19, 2011. url: http : / / www .

heroku.com/.

[6] John H. Howard. “On Overview of the An-
drew File System.” In: USENIX Winter. 1988,
pp. 23–26. url: http://dblp.uni- trier.

de / db / conf / usenix / usenix _ wi88 . html #

Howard88.

[7] N. Jain et al. “Network Imprecision: A New
Consistency Metric for Scalable Monitoring.”
In: 8th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). UT
Austin. 2008.

[8] I. Jawhar, N. Mohamed, and K. Shuaib. “A
framework for pipeline infrastructure monitor-
ing using wireless sensor networks.” In: Wire-
less Telecommunications Symposium, 2007.
WTS 2007. Apr. 2007, pp. 1–7. doi: 10.1109/
WTS.2007.4563333.

[9] Matthew L. Massie, Brent N. Chun, and
David E. Culler. “The ganglia distributed
monitoring system: design, implementation,
and experience.” In: Parallel Computing 30.7
(2004), pp. 817–840. issn: 0167-8191. doi:
DOI : 10 . 1016 / j . parco . 2004 . 04 . 001.
url: http : / / www . sciencedirect . com /

science / article / B6V12 - 4CMHWWX - 2 / 2 /

b6b44ba67c732867d1c3881c510b2953.

[10] MongoDB. 10gen. Apr. 19, 2011. url: http:

//www.mongodb.org/.

[11] Nginx News. Apr. 19, 2011. url: http : / /

nginx.org/.

[12] Christopher Peplin et al. Astral. Apr. 2011.
url: http://astral.rhubarbtech.com.

[13] Performance and memory usage comparisons.
Ruby Enterprise Edition. Apr. 19, 2011. url:
http://www.rubyenterpriseedition.com/

comparisons.html.

[14] Phusion Passenger. Apr. 19, 2011. url: http:
//www.modrails.com/.

[15] Real-Time Messaging Protocol (RTMP) speci-
fication. Adobe. Apr. 19, 2011. url: http://
www.adobe.com/devnet/rtmp.html.

[16] Redis. Apr. 19, 2011. url: http://redis.io/.

[17] Robbert Van Renesse, Kenneth P. Birman, and
Werner Vogels. “Astrolabe: A robust and scal-
able technology for distributed system monitor-
ing, management, and data mining.” In: ACM
Trans. Comput. Syst. 21.2 (2003), pp. 164–206.
issn: 0734-2071. doi: http://doi.acm.org/
10.1145/762483.762485.

11


